SIEVE METHODS AND THE TWIN PRIME CONJECTURE

Mbakiso Fix Mothebe
Department of Mathematics, University of Botswana, Pvt Bag 00704, Gaborone, BOTSWANA
E-mail : mothebemf@ub.ac.bw

(Received: Aug. 25, 2023 Accepted: Apr. 18, 2024 Published: Apr. 30, 2024)
Abstract: For $n \geq 3$, let p_{n} denote the $n^{\text {th }}$ prime number. Let [] denote the floor or greatest integer function. For a positive integer m, let $\pi_{2}(m)$ denote the number of twin primes not exceeding m. The twin prime conjecture states that there are infinitely many prime numbers p such that $p+2$ is also prime. In this paper we state a conjecture to the effect that given any integer $a>0$ there exists an integer $N_{2}(a)$ such that

$$
\left[\frac{a p_{n+1}^{2}}{2(n+1)}\right] \leq \pi_{2}\left(p_{n+1}^{2}\right)
$$

for all $n \geq N_{2}(a)$ and prove the conjecture in the case $a=1$. This, in turn, establishes the twin prime conjecture.

Keywords and Phrases: Primes, Twin primes, Sieve methods.
2020 Mathematics Subject Classification: 11N05, 11N36.

1. Introduction and Main Results

An integer $p \geq 2$ is called a prime if its only positive divisors are 1 and p. The prime numbers form a sequence:

$$
\begin{equation*}
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47 \ldots \tag{1.1}
\end{equation*}
$$

Euclid (300 B.C.) considered prime numbers and proved that there are infinitely many. Prime numbers are odd except 2 and the only consecutive prime numbers

